UNIVERSITY OF ARIZONA

Topics in Low-Level Reverse Engineering,
with Applications to Software Security

Final Project Report

Contract No.: FA9550-07-1-0019
Principal Investigator: Saumya Debray
Period of Contract: Dec 1, 2006 to Nov 30, 2009
Date of Report: Jan 27, 2010

\

20120181y

Final Performance Report

Project Information
Contract No.: FAS550-07-1-0019

Contract Title: Topics in Low-Level Reverse Engineering, with Applications to Software Security
Principal Investigator: Saumya Debray
Period of contract: Dec 1, 2006 to Nov 30, 2009

Date of report: Jan 27, 2010

Project Objectives

Malware attacks on computer systems have increased sharply in recent years. Mitigating the effects of
such attacks requires quick response. However, this is hampered by the many layers of anti-analysis
defenses mounted by malware code, which existing program analysis techniques do not handle well and
which therefore require time-consuming and tedious manual intervention. The overall goal of this
project was to develop techniques to automate the analysis of malware executables, and thereby
accelerate the process of identifying the internal logic of the malware code. A secondary goal was to
develop automated techniques to identify and—where possible, eliminate—anti-analysis defenses in
the code, so as to simplify subsequent analysis.

Significant Accomplishments
The significant accomplishments of the project consist of the following:

1. [Foundations]: We developed a formal semantic model for self-modifying code.

2. [Static Extraction of Malware Code]: We developed a technique to use program analysis
algorithms to identify the decryptor routine in a malware binary, and then modify this decryptor
routine in such a way that it can be used to extract the malware code.

3. [Anti-analysis Defense Detection): We developed a technique to identify dynamic anti-analysis
defenses in the malware code by analyzing the control-flow structure of the code leading to the
decryptor routine.

4. [Detection of Disassembly Errors]: We developed a machine-learning-based technique to
identify code regions in a disassembled file that appear to contain disassembly errors.

We discuss these items in more detail below.

1. Foundations

Automated analysis of obfuscated malware code requires the application of program analysis
algorithms. However, classical program analysis algorithms, which are used in the areas of compilers
and software engineering, presuppose that the code being analyzed is immutable. They are therefore
inapplicable to self-modifying programs, which includes most malware. To address this problem, we
formulated a formal semantics for self-modifying code [DCT08]. To the best of our knowledge this is the
only work on formally modeling self-modifying code that makes it straightforward to identify code
regions where classical program analysis algorithms can be applied with the appropriate soundness
guarantees. It forms the formal basis for our work on Static Code Extraction and Anti-Analysis Defense
Identification.

A detailed description of the formal semantics is given in the publication referenced below [DCT08). It is
available from the PI's web page (www.cs.arizona.edu/~debray/Publications).

2. Static Extraction of Malware Code

Most malware code is transmitted in encrypted or “packed” form and unpacked at runtime prior to
execution. In many cases, the unpacking routine that restores the code to its original executable form is
guarded by various kinds of defensive checks aimed at making it harder to reverse-engineer the code.
For example, such defenses might cause the unpacker to be invoked—and the malware payload to be
exposed for analysis—only on specific dates (“time bombs”) or when executed in a specific environment
(“logic bombs”). The objective of this part of the project was to devise techniques to extract the code
via static analysis, thereby sidestepping such dynamic defenses.

We developed an algorithm to statically extract packed malware code [CDKT09). There are three
conceptual parts to this algorithm. First, memory analysis is used to identify memory locations that are
modified, and program slicing is then used to identify the unpacker code. The second part then uses the
control flow structure of the code to identify—and, where possible, eliminate—runtime anti-analysis
defenses. Finally, the unpacker code is emulated in a sandboxed environment to extract the malware
code.

We implemented our ideas in a binary analysis too! consisting of roughly 81,000 lines of C code. This
system was evaluated on a variety of packed malware code that used both commercial packers, such as
UPX and tElock, as well as a number of different custom-crafted packers. In each case, we used a
manual analysis to determine the actual unpacked instruction sequence, and compared this with the

D)

unpacked code obtained using our analysis tool to determine the extent to which our tool was able to
successfully extract the packed malware code.

Our evaluation of this algorithm showed that it could handle a variety of commercial as well as custom
unpackers. One engineering issue that posed a hurdle was that of replicating OS-level features with
sufficient fidelity within the sandboxed unpacker: this is necessary to deal with unpacker code that
makes system calls as part of the unpacking process. This, in turn, limited the extent to which our
implemenation was able to handle multi-level unpacking.

A detailed description of this algorithm and our evaluation data are available in the publication
referenced below [CDKTQ9]. It is available from the PI’s web page
(www.cs.arizona.edu/~debray/Publications).

3. Anti-Analysis Defense Identification

As discussed above, one of the steps in the static extraction of malware code is to identify the unpacker
code using program analysis techniques. These same program analyses also reveal the control flow
structure of the code leading up to the unpacker. An examination of this control flow structure then
makes it possible to detect the possible presence and nature of anti-analysis defenses in the code
[CDKT09]. Furthermore, the analysis of this code reveals whether there are any dependencies between
the defense code and the unpacker code—if, as is usually the case, there are no dependencies, the
defense code can be removed without affecting the unpacker code. This therefore provides an
approach to the identification and elimination of runtime anti-analysis defenses with semantic
soundness guarantees.

A detailed description of this algorithm and our evaluation data are available in the publication
referenced below [CDKTO09]. It is available from the PI’s web page
(www.cs.arizona.edu/~debray/Publications).

4.Detection of Disassembly Errors

A fundamental assumption made by all existing approaches for static analysis of malware executables
(including ours) is that the malware code has been accurately disassembled. This assumption may not
hold true if the malware being analyzed uses anti-disassembly defenses, i.e., techniques intended to
introduce errors into disassembled code. Moreover, the ubiquitous Intel 1A-32 architecture has a very
high density of instruction encoding, i.e., almost any sequence of bytes decodes to some legal
instruction—it is unusual for a disassembly (even one that contains numerous errors) to actually
encounter an illegal byte sequence. This means that disassembly errors usually occur silently,
substituting erroneous instructions for the correct ones without any external indication that something
has gone wrong. The reason this is an issue, even using current dynamic analysis (which observe the
execution of the program being analyzed and therefore are presumably immune to anti-disassembly

3

defenses), is that dynamic analyses can only examine those parts of the program that were executed;
the remainder—which may contain conditionally unpacked code—has to be examined using the results
of static disassembly. If the static disassembly contains undetected errors, subsequent analyses based
on the incorrect disassembly propagate errors silently up the entire analysis chain. Our objective in this
portion of the project was to develop techniques to analyze an instruction sequence obtained via static
disassembly and identify possible errors.

We carefully examined a large body of correct and incorrect disassemblies and observed that the
erroneous disassemblies, while technically “legal”, looked different from correct disassembilies.
Sometimes the discrepancies were quite obvious, e.g., addresses that did not correspond to any location
within the program; at other times they were subtle, e.g., the use of unusual combinations of
instructions or addressing modes. We then used machine learning techniques to systematize the
process of distinguishing correctly disassembled code from incorrect disassemblies. The idea isto use a
training set of examples of both correct and incorrect disassemblies, and use machine learning to
determine which combinations of features of these disassemblies correspond to correct disassemblies
and which do not. The resulting classifier can then be used to detect possible errors in other
disassembled code. The accuracy of this classifier depends on the extent of coverage provided by the
training set. We evaluated our classifier on a number of disassemblies obtained from obfuscated
binaries and found that, with a little care in selecting the training input, it is possible to obtain quite
accurate error classification in general [KDF09].

A detailed description of this algorithm and our evaluation data are available in the publication
referenced below [KDF09]. It is available from the PI's web page
(www.cs.arizona.edu/~debray/Publications).

Theses and Dissertations

In addition to the publications mentioned above, the research effort has led to one MS thesis
[Krishnamoorthy] and one PhD dissertation [Coogan]. We describe their most significant contributions
below.

1. Kevin Coogan,” Automatic Deobfuscation of Malware Executables.”

Doctoral Dissertation, The University of Arizona, Tucson.

Expected Completion Date: December 2010.

Executive Summary

Computer malware typically resort to a variety of techniques to make it difficult for others to
understand the internal logic of the malware code; these techniques are usually referred to as “code
obfuscations.” The effect of such obfuscations is to slow down the process of understanding the

4

malware and devising countermeasures. This dissertation investigates techniques to automate the
process of identifying and eliminating the effects of obfuscation, and thereby extracting the essential
internal logic of the malware code, with the intent of simplifying and speeding up the task of developing
countermeasures to new malware. Two different approaches are explored: static analysis, where the
malware sample is analyzed without running it; and dynamic analysis, where the malware is executed in
a suitably isolated environment and its execution observed. In the case of static analysis, the
dissertation describes a technique to use program analysis techniques to identify code that the malware
would decrypt when executed, and extract this code automatically without running the malware. In the
case of dynamic analysis, the dissertation develops techniques to examine the sequence of instructions
executed by the malware sample and identifying those instructions that are irrelevant to its observable
behavior and which can therefore be discarded, thereby reducing the set of instructions that have to be
considered when understanding the malware code.

Note: The dissertation is expected to be completed by December 2010. At that time it wil! be available
from the web site of the University of Arizona Department of Computer Science, or via email from the Pl
(email: debray@cs.arizona.edu).

People involved in the research (in addition to the PI): Kevin Coogan, Gregg Townsend, TasneemKaochar,
Amr Gaber.

Publications resulting from this research:

1. S.K. Debray, K. P. Coogan, and G. M. Townsend. On the Semantics of Self-Unpacking
Malware Code. Technical Report, Dept. of Computer Science, University of Arizona, Tucson.
July 2008. http://www.cs.arizona.edu/~debray/Publications/self-modifying-pgm-
semantics.pdf

2. Kevin Coogan, Saumya Debray, Tasneem Kaochar, andGregg Townsend. Automatic Static
Unpacking of Malware Binaries. Proc. 16th. IEEE Working Conference on Reverse
Engineering, October 2009, pp. 167-176.

2. Nithya Krishnamoorthy, “Automatic Static Detection of Disassembly Errors”
MS Thesis, The University of Arizona, Tucson

Expected Completion Date: May 2010

Executive Summary

When someone wants to understand the internal logic of a malware program, the first step is to take
the malware file, which is in a format suitable for execution on a computer, and extract from it a human-
readable representation of the machine instructions in the malware code. This process is known as

5

disassembly, and all of the work on malware analysis assumes that the disassembly is successful and
that the human-readable representation obtained is correct. Unfortunately, in practice disassemblies
may contain errors, and the errors may not always be detected by the disassemble. When this happens,
the conclusions drawn from subsequent analyses of the erroneous disassembly are also wrong.

This thesis describes an approach for automatically detecting locations within a disassembly that may
contain errors. The key insight in this work is that when a disassembly error occurs, the resulting
(erroneous) instruction sequence is subtly different from disassemblies that are correct. The thesis
proposes an approach that uses machine learning techniques to “learn” how to distinguish between a
sample set of correct disassemblies from a sample set of incorrect disassemblies. This resultsin a
software tool that can be used to detect incorrect disassemblies. Experimental studies indicate that the
resulting tool can automatically detect errors in disassemblies with a high degree of precision.

Note: The thesis is expected to be completed by May 2010. At that time it will be available from the
web site of the University of Arizona Department of Computer Science, or via email from the Pl (email:
debray@cs.arizona.edu).

People involved with this research (in addition to the Pl): Nithya Krishnamoorthy, Keith Fligg.
Publications resulting from this research:

1. Nithya Krishnamoorthy, Saumya Debray, and Keith Fligg. Static Detection of Disassembly Errors.
Proc. 16th. IEEE Working Conference on Reverse Engineering, October 2003, pp. 259-268. (A
revised and extended version of the paper has been invited to a special issue of the journal
Science of Computer Programming.)

Software Resulting from the Research Effort

The research effort has led to the development of prototype software tools used for validation and
evaluation of the research. These consist of the following:

1. Atool for automatic code extraction from packed malware executables. This consists of roughly
81,000 lines of C code. A README file for this system is given in Appendix 1. The software is
available from the P1 via email.

2. Atool for automatic detection of disassembly errors. This consists of a total of roughly 65,000
lines of C code. A README file for this system is given in Appendix 2. The software is available
from the Pl via email.

References

[Coogan]
Kevin Coogan. Automatic Deobfuscation of Malware Executables. Doctoral dissertation,
University of Arizona. Dec. 2010 (expected).

[DCTO08]
S. K. Debray, K. P. Coogan, and G. M. Townsend. On the Semantics of Self-Unpacking Malware
Code. Technical Report, Dept. of Computer Science, University of Arizona, Tucson. July 2008.
http://www.cs.arizona.edu/~debray/Publications/self-modifying-pgm-semantics.pdf

[COKTO09)

Kevin Coogan, Saumya Debray, Tasneem Kaochar, andGregg Townsend. Automatic Static
Unpacking of Malware Binaries. Proc. 16th. IEEE Working Conference on Reverse Engineering,
October 2009, pp. 167-176.

{Krishnamoorthy]
Nithya Krishnamoorthy. Automatic Static Detection of Disassembly Errors. MS Thesis, Dept. of
Computer Science, The University of Arizona, May 2010 (expected).

[KDF09)
Nithya Krishnamoorthy, Saumya Debray, and Keith Fligg. Static Detection of Disassembly Errors.
Proc. 16th. IEEE Working Conference on Reverse Engineering, October 2009, pp. 259-268. (A
revised and extended version of the paper has been invited to a special issue of the journal
Science of Computer Programming.)

APPENDIX 1. Online README file for Automatic Static Decryption Tool

The tool described earlier for satic extraction of malware code consists of approximately 81,000 lines of
C code. It is not practical to attach this to this report; instead we attach the README file describing this
tool. The software itself can be obtained from the Pl (email: debray@cs.arizona.edu).

+ y -y 1
Y eq and |
I} t is meant run on linux 2.6. 1 r highe
; —~WE € Jjarvag SO ~tor should be insta ed ny Y SJS*C'
b 3 m a1l fronm)¢ vel install director te that the
) | 1 ta jo)u I Executak i S catead r
I L
ng \
¢ sxecutaple file mar as 1 Hiteys S A Tua) t f
1 A 7= 4 Wit parameter
| 3 particular X utar X e, E
I I br 1gg bin/plto <executable ame
i Y Ln;
Iv € Y ! plto samg Hybr lefens . EXT
I binary file if transit point £ i, and 1
r
o Y ion This t P e iump of
= 7 + £y
X) 1 inpack » {
¥ t
Al ’e
4 4 A‘;
r
- M
i 1
X 1 € X ample I wa test cod
WARNING nalo < A L 5 WA v
v
A i
1 L I A€ 1 func nt ra 2 V1ir a1 3CAQX T I cinm
1adr
= - -} 1at structures - P nter na

13

APPENDIX 2. Disassembly Error Detection Tool

The tool for detecting disassembly errors consists of over 61,000 lines of C code for the tool that generates
training inputs and over 3,000 lines of C code. It is not practical to attach this to this report; instead we
attach the README file describing this tool. The software itself can be obtained from the Pl (email:
debray@cs.arizona.edu). Additionally, it uses-C4.5, an open-source tool for constructing decision trees;
however, this software must be obtained from its author (http://www.rulequest.com/Personal);
restrictions in the license preclude us from distributing it.

4 X
i mk i 1B nstalle
Y .
13 PL1 r generating training ing
= od at g stes feature vectors from PLT aty
4 L tru on algorithm modified f e ientifyin
0 | A Yy P X
pts: Bash pts that run the var 1S p1 Se
t S T t 1Ct tra ing d a
t wing commands on the lael:
ol = ma K¢ 1
,
t a e ke
i t of training exce ak hat ntai
Y | i plt bin/plt
3 the 1ltant t f 1les through xtra ature
I ra a 1 C sed witnh t ippropriat "4 ler jod ded
t mment sAndGetC45Set.sh t btain t trainir . f
med allfeatur lata the tput folder
reate a appropriat lifeatur names in the am tput fold
B 3 tu A IT the base
Rur pt 1 1 | h t ~ Ate 'tf 2! isior Y
n N te ‘1‘ Andgd ,:1&
t jump output f t est file along with ti
head rmat
] feature set using scripts/make_testing diff f Ires . sh
a1 ! t test all.s jet the results in the fil >ripts/F B

16

REPORT DOCUMENTATION PAGE -y ekl

Public reporting burden for thus collection of information is estimated 10 average 1 hour per response, iINCuiing e tme for revewing Nstructions, searching exstng data sources, gathenng and manwining the
cata needad, and compietng and reviewing fus caliection of information. Send comments regarding this burden estmate or any other aspect of this collection of information, iINChxEng sugoestions for reducing
Tis burden 10 Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Hghway, Suite 1204, Arlington, VA 22202-4302
Rasponoents should be aware that notwithstanading any other prowsion of law, no person shall be subject to any penaly for faiing 10 comply with a codection of information if it does not display a curenty valid
OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

Jan 27, 2010 Final Performance Report Dec 1, 2006 to Nov 30, 2009
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Topics in Low-Level Reverse Engineering, with Applications FAS550-07-1-0018

5b. GRANT NUMBER

Sc. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Saumya Debray

5e. TASK NUMBER

5f, WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

University of Arizona
0 Gox 31100\
trould - Simpson FaWn

TUuesDN, A2 $1A1-00TM

9. SPONSORING / MONIT ORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
AFOSR/NL
875 N RANDOLPH STREET 11. SPONSOR/MONITOR'S REPORT

SUITE 325, RM 3112 NUMBER(S)

ARLINGTON VA 22203-1768 AFRL-0SR- VAT R-201- D (p

4

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution A

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The goal of the project was to investigate automated techniques for analyzing computer
malware codes, so as to simplify and accelerate the process of penetrating the defenses
mounted by such malware to prevent analysis and extracting the internal logic of the malware.
The investigators focused on analysis techniques that did not require the execution of the
malware code. The project resulted in the development of a number of techniques for the
analysis of executable files, including: a theoretical model for reasoning about malware code
that modifies itself as it runs; an approach to automatically identify anti-analysis defenses
in malware codes; an approach to automatically identify and emulate the code that performs
the actual decryption of the malware code, and thereby extract the malware code; and an
approach to detect possible errors in the instruction sequence obtained from examining a
malware executable file. These results formed substantial components of one PhD dissertation
and one MS thesis in Computer Science.

15. SUBJECT TERMS

l'_1 6. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER I 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (inciude area
code)
L

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI S18. 239.18

